- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ambat, M_V (1)
-
Boni, R. (1)
-
Froula, D_H (1)
-
LaBelle, I_A (1)
-
Mack, L_S (1)
-
Miller, K_G (1)
-
Mori, W_B (1)
-
Palastro, J_P (1)
-
Pigeon, J_J (1)
-
Rigatti, A. (1)
-
Settle, I_A (1)
-
Shaw, J_L (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dephasingless laser wakefield acceleration (DLWFA), a novel laser wakefield acceleration concept based on the recently demonstrated “flying focus” technology, offers a new paradigm in laser-plasma acceleration that could advance the progress toward a TeV linear accelerator using a single-stage system without guiding structures. The recently proposed NSF OPAL laser facility could be the transformative technology that enables this grand challenge in laser-plasma acceleration. We review the viable parameter space for DLWFA based on the scaling of its performance with laser and plasma parameters, and we compare that performance to traditional laser wakefield acceleration. These scalings indicate the necessity for ultrashort, high-energy laser architectures such as NSF OPAL to achieve groundbreaking electron energies using DLWFA. Initial results from MTW-OPAL, the platform for the 6-J DLWFA demonstration experiment, show a tight, round focal spot over a distance of 3.7 mm. New particle-in-cell simulations of that platform indicate that using hydrogen for DLWFA reduces the amount of laser light that is distorted due to refraction at ionization fronts. An experimental path, and the computational and technical design work along that path, from the current status of the field to a single-stage, 100-GeV electron beam via DLWFA on NSF OPAL is outlined. Progress along that path is presented.more » « less
An official website of the United States government
